

Using R Statistical Software to Analyze Under-Represented Minority Student Success

About Winona State University

- Regional mid-sized (approx. 8900 headcount enrollment) University with a predominantly traditional, residential undergraduate student body.
- A campus in Rochester comprised mostly of transfer and graduate students.
- Selective admission policies

Winona State Data Services

An IT/IR hybrid that provides:

- DBA services, Microsoft CRM and Hobson's data feed management
- Business Process (Backend) Reporting
- IR/External Survey/Program Review Reporting
- Internal Student Survey Support
- Enrollment Analytics, Forecasting and Statistical Analysis

Goals

Highlight the strengths and weaknesses of R by the way of example

The Example

Factors Affecting Academic Success of Under-Represented Minority Students

- Cohort = Known Diverse Fall New Entering Freshmen, 2007-2011
- Success = Completed First Year with a 2.5 GPA or better

Factors Included

- High School GPA
- High School Rank
- ACT Score
- Gender
- Declared Major (Y/N)
- Low Income
- First Generation
- Athlete (Y/N)

- Live On Campus
- SSS Program
- Used Advising
- Enrolled in Orientation
- Work On-Campus
- Registration Date
- Distance from WSU

What is R?

Free, high quality statistical software!

Really, a programming language.

```
"HSPercentile"
[1] "HS GPA"
[3] "ACTScore"
                       "Major"
                      "FirstGeneration"
[5] "LowIncome"
[7] "Gender"
                       "Diverse"
[9] "SSS"
                       "Athlete"
[11] "Orientation"
                       "FirstReg"
[13] "DistanceFromWSU" "AdvisingVisits"
[15] "AdvisingMinutes" "OnCampus"
[17] "WorkOnCampus"
                       "Success"
[19] "UsedAdvising"
```

```
> mean(WSU.df$Success=="Success")
[11 0.6380675
> table(WSU.df$Diverse, WSU.df$Success)
             Success Not Success
 Diverse
                 290
                             248
 Not Diverse 5191
                            2861
> prop.table(table(WSU.df$Diverse, WSU.df$Success), 1)
               Success Not Success
 Diverse 0.5390335 0.4609665
 Not Diverse 0.6446846 0.3553154
```

```
> ddply(WSU.df,~Diverse+Gender, summarise,
       SuccessRate=mean(Success=="Success"),
       N=length(Success))
               Gender SuccessRate
      Diverse
                                       \mathbf{N}
1
      Diverse
                 Male
                         0.4159664
                                     238
      Diverse Female 0.6366667
                                      300
3
  Not Diverse
                 Male 0.5245787
                                    2848
```

Female 0.7104151

5204

Not Diverse

		Diverse	Gender		Success	MeanGPA	STD	N
1		Diverse	Male		Success	3.2797	0.4286	99
2		Diverse	Male	Not	Success	2.8335	0.4351	139
3		Diverse	Female		Success	3.3736	0.3853	191
4		Diverse	Female	Not	Success	3.0366	0.4407	109
5	Not	Diverse	Male		Success	3.3117	0.4206	1494
6	Not	Diverse	Male	Not	Success	2.9170	0.4388	1354
7	Not	Diverse	Female		Success	3.5044	0.3507	3697
8	Not	Diverse	Female	Not	Success	3.1507	0.4025	1507

```
m <- ggplot(WSU.df, aes(y=HS_GPA, x=Diverse))
m <- m + facet_grid(. ~ Gender)
m <- m + geom_boxplot()
m <- m + xlab("Diveres Status") + ylab("GPA")
m <- m + ggtitle("HS GPA by Gender and Diverse Status")
m <- m + WSU.theme</pre>
print(m)
```

High School GPA by Diverse Status


```
> pc <- princomp(~HS_GPA+HSPercentile+ACTScore, data=WSU.df,</pre>
                  cor=TRUE)
> pc$sdev
   Comp.1 Comp.2 Comp.3
1.4105885 0.9417946 0.3510882
> pc$loadings
Loadings:
             Comp.1 Comp.2 Comp.3
HS_GPA 0.671 -0.220 0.708
HSPercentile 0.669 -0.232 -0.706
ACTScore 0.320 0.947
> pc.scores <- data.frame(with(pc, scale(WSU.df[,c("HS GPA",</pre>
"HSPercentile", "ACTScore")], center = center, scale = scale)
%*% loadings(pc)))
> names(pc.scores) <- c("PC1", "PC2", "PC3")</pre>
> df <- data.frame(WSU.df, pc.scores)</pre>
```

> add1(lrfit, scope= ~Diverse*Gender*HS_GPA*ACTScore*HSPercentile*PC1*PC2*PC, test="Chisq")

	Df	Deviance	AIC	LRT	Pr(>Chi)	
<none></none>		9986.1	9990.1			
Gender	1	9728.4	9734.4	257.72	< 2.2e-16	***
HS_GPA	1	8468.1	8474.1	1517.98	< 2.2e-16	***
ACTScore	1	9825.1	9831.1	161.03	< 2.2e-16	***
HSPercentile	1	8604.8	8610.8	1381.30	< 2.2e-16	***
PC1	1	8416.6	8422.6	1569.50	< 2.2e-16	***
PC2	1	9959.1	9965.1	27.01	2.02e-07	***
PC3	1	9976.8	9982.8	9.34	0.002243	**

> summary(lrfit)

```
Estimate Std. Error z value Pr(>|z|) (Intercept) 0.63088 0.10427 6.051 1.44e-09 *** Diverse 0.07995 0.10719 0.746 0.456 PC1 0.76905 0.02222 34.610 < 2e-16 ***
```

> add1(lrfit, scope= ~Diverse*Gender*HS_GPA*ACTScore*HSPercentile*PC1*PC2*PC3, test="Chisq")

	Df	Deviance	AIC	LRT	Pr(>Chi)	
<none></none>		8416.6	8422.6			
Gender	1	8376.2	8384.2	40.436	2.032e-10	***
HS_GPA	1	8394.9	8402.9	21.720	3.154e-06	***
ACTScore	1	8404.6	8412.6	12.018	0.0005269	***
HSPercentile	1	8416.6	8424.6	0.034	0.8527541	
PC2	1	8404.7	8412.7	11.938	0.0005499	***
PC3	1	8407.0	8415.0	9.655	0.0018887	**
Diverse:PC1	1	8416.0	8424.0	0.573	0.4491383	

> summary(lrfit)

```
Estimate Std. Error z value Pr(>|z|) (Intercept) 0.41292 0.10978 3.761 0.000169 *** Diverse 0.06869 0.10747 0.639 0.522750 PC1 0.73893 0.02264 32.639 < 2e-16 *** Gender 0.35527 0.05563 6.386 1.7e-10 ***
```

Probability of Success by Diverse, Gender and Preparedness

Probability of Success by Diverse, Gender and Preparedness

Diverse	Not Diverse	Gap	
53.9%	64.5%	10.6%	

Adjusted for Gender

	Not Diverse	Diverse	Gap
Male	52.5%	41.6%	10.9%
Female	71.0%	63.7%	7.4%
Gap	18.6%	22.1%	

Adjusted for Gender and Preparedness

	Not Diverse	Diverse	Gap
Male	61.8%	60.2%	1.6%
Female	69.8%	68.3%	1.5%
Gap	8.0%	8.1%	

Probability of Success by Diverse, HS GPA and Preparedness

AIC from 557 to 558.8 p-value = 0.5989 Probability of Success by Athlete

AIC from 557 to 559 p-value = 0.823 Probability of Success by First Generation

AIC from 557 to 557.7
p-value = 0.2415

Probability of Success by Low Income

AIC from 557 to 558.6 p-value = 0.5218 Probability of Success by Declared Major

AIC from 557 to 559
p-value = 0.8973

Probability of Success by Lived On Campus

AIC from 557 to 556.1 p-value = 0.0932

Probability of Success by Registered for Orientation

AIC from 557 to 556.5 p-value = 0.1215 Probability of Success by Student Support Services

AIC from 557 to 556.4 p-value = 0.1072 Probability of Success by Used Advising

AIC from 557 to 555.9 p-value = 0.082 Probability of Success by Worked On Campus

Conclusion

- Diversity gap is largely attributable to onaverage lower incoming HS GPA, Rank and ACT Scores
- Gender gap is actually larger than our diversity gap
- After accounting for gender and preparedness, not single factors we looked at were strongly correlated with diverse student success.

R Strength/Weakness

- It is a programming language
 - Offers incredible flexibility
 - Steep learning curve
- There are GUI add-ons (like R Commander), but not as polished or as complete as commercial packages

R Strengths/Weaknesses

- Great graphics capabilities
- Scripting analysis for later re-use.
 Especially graphics!
- Lots of add-on packages

Free Comes at a Cost

- Supported by a large team of really senior programmers and statisticians, but no one to complain to
- Documentation is abundant, but scattered, and probably too abundant

More Information

Ed Callahan ecallahan@winona.edu

http://www.winona.edu/ipar/reports.asp

WINONA STATE UNIVERSITY

Questions?

Title

Text